Extensions 1→N→G→Q→1 with N=C22xC6 and Q=Dic3

Direct product G=NxQ with N=C22xC6 and Q=Dic3
dρLabelID
Dic3xC22xC696Dic3xC2^2xC6288,1001

Semidirect products G=N:Q with N=C22xC6 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C22xC6):1Dic3 = C6xA4:C4φ: Dic3/C2S3 ⊆ Aut C22xC672(C2^2xC6):1Dic3288,905
(C22xC6):2Dic3 = C2xC6.7S4φ: Dic3/C2S3 ⊆ Aut C22xC672(C2^2xC6):2Dic3288,916
(C22xC6):3Dic3 = C3xC23.7D6φ: Dic3/C3C4 ⊆ Aut C22xC6244(C2^2xC6):3Dic3288,268
(C22xC6):4Dic3 = C62.38D4φ: Dic3/C3C4 ⊆ Aut C22xC672(C2^2xC6):4Dic3288,309
(C22xC6):5Dic3 = C6xC6.D4φ: Dic3/C6C2 ⊆ Aut C22xC648(C2^2xC6):5Dic3288,723
(C22xC6):6Dic3 = C2xC62:5C4φ: Dic3/C6C2 ⊆ Aut C22xC6144(C2^2xC6):6Dic3288,809
(C22xC6):7Dic3 = C23xC3:Dic3φ: Dic3/C6C2 ⊆ Aut C22xC6288(C2^2xC6):7Dic3288,1016

Non-split extensions G=N.Q with N=C22xC6 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C22xC6).1Dic3 = C3xA4:C8φ: Dic3/C2S3 ⊆ Aut C22xC6723(C2^2xC6).1Dic3288,398
(C22xC6).2Dic3 = C12.S4φ: Dic3/C2S3 ⊆ Aut C22xC6726(C2^2xC6).2Dic3288,68
(C22xC6).3Dic3 = C2xC6.S4φ: Dic3/C2S3 ⊆ Aut C22xC672(C2^2xC6).3Dic3288,341
(C22xC6).4Dic3 = C12.12S4φ: Dic3/C2S3 ⊆ Aut C22xC6726(C2^2xC6).4Dic3288,402
(C22xC6).5Dic3 = C3xC12.D4φ: Dic3/C3C4 ⊆ Aut C22xC6244(C2^2xC6).5Dic3288,267
(C22xC6).6Dic3 = C36.D4φ: Dic3/C3C4 ⊆ Aut C22xC6724(C2^2xC6).6Dic3288,39
(C22xC6).7Dic3 = C23:2Dic9φ: Dic3/C3C4 ⊆ Aut C22xC6724(C2^2xC6).7Dic3288,41
(C22xC6).8Dic3 = (C6xD4).S3φ: Dic3/C3C4 ⊆ Aut C22xC672(C2^2xC6).8Dic3288,308
(C22xC6).9Dic3 = C3xC12.55D4φ: Dic3/C6C2 ⊆ Aut C22xC648(C2^2xC6).9Dic3288,264
(C22xC6).10Dic3 = C6xC4.Dic3φ: Dic3/C6C2 ⊆ Aut C22xC648(C2^2xC6).10Dic3288,692
(C22xC6).11Dic3 = C36.55D4φ: Dic3/C6C2 ⊆ Aut C22xC6144(C2^2xC6).11Dic3288,37
(C22xC6).12Dic3 = C22xC9:C8φ: Dic3/C6C2 ⊆ Aut C22xC6288(C2^2xC6).12Dic3288,130
(C22xC6).13Dic3 = C2xC4.Dic9φ: Dic3/C6C2 ⊆ Aut C22xC6144(C2^2xC6).13Dic3288,131
(C22xC6).14Dic3 = C2xC18.D4φ: Dic3/C6C2 ⊆ Aut C22xC6144(C2^2xC6).14Dic3288,162
(C22xC6).15Dic3 = C62:7C8φ: Dic3/C6C2 ⊆ Aut C22xC6144(C2^2xC6).15Dic3288,305
(C22xC6).16Dic3 = C23xDic9φ: Dic3/C6C2 ⊆ Aut C22xC6288(C2^2xC6).16Dic3288,365
(C22xC6).17Dic3 = C22xC32:4C8φ: Dic3/C6C2 ⊆ Aut C22xC6288(C2^2xC6).17Dic3288,777
(C22xC6).18Dic3 = C2xC12.58D6φ: Dic3/C6C2 ⊆ Aut C22xC6144(C2^2xC6).18Dic3288,778
(C22xC6).19Dic3 = C2xC6xC3:C8central extension (φ=1)96(C2^2xC6).19Dic3288,691

׿
x
:
Z
F
o
wr
Q
<